Wednesday, June 1, 2016

Sister cities-nya Bandung

Sister City atau Kota Kembar adalah konsep penggandengan dua kota yang berbeda lokasi dan administrasi politik dengan tujuan menjalin hubungan budaya dan kotrak sosial antar penduduk. Kota kembar umumnya memiliki persamaan keadaan demografi dan masalah-masalah yang dihadapi. Konsep kota kembar bisa diumpamakan sebagai sahabat pena antara dua kota. Hubungan kota kembar sangat bermanfaat bagi program kerjasama di bidang budaya dan perdagangan.
Di Indonesia istilah ini digunakan oleh Kementerian Dalam Negeri dan Kementerian Luar Negeri adalah Sister City, dengan keluarnya Surat Edaran Menteri Dalam Negeri No. 193/1652/PUOD tanggal 26 April 1993 perihal Tata Cara Pembentukan Hubungan Kerjasama Antar Kota (Sister City) dan Antar Provinsi (Sister Province) dalam dan luar negeri.Berdasarkan uraian di atas, maka skema Sister City berawal dipada tahun 1951, kemudian baru di Amerika Serikat (1956), dan kemudian Indonesia sendiri menggunakan secara formal pada tahun 1993. Meskipun sebenarnya jauh sebelum itu secara terbatas sudah dimulai di Indonesia, misalnya Pemerintah Kota Bandung dengan Braunschweig, Jerman yang menandatangani MOU kerjasama sister city pada Juni 1960, dan dengan Fort Worth, USA pada April 1990.
Keuntungan Yang Didapatkan Dengan Skema Sister City
Keuntungan yang didapat dengan skema sister city antara lain :
  • Kesempatan untuk tukar menukar pengetahuan dan pengalaman pengelolaan pembangunan bidang-bidang yang dikerjasamakan.
  • Mendorong tumbuhnya prakarsa dan peran aktif pemerintah daerah kota, masyarakat dan swasta.
  • Mempererat persahabatan pemerintah dan masyarakat kedua belah pihak.
  • Kesempatan untuk tukar menukar kebudayaan dalam rangka memperkaya kebudayaan daerah.
Sister City (Mitra Kota) Kota Bandung
Kota Bandung memiliki 25 sister city. Jumlah ini menempatkan Kota Bandung sebagai kota dengan jumlah sister city terbanyak nomor dua setelah Jakarta dengan total 49 sister city. Kota yang menjadi sister city Kota Bandung antara lain:
  1. United States Fort Worth, Texas, United States
  2. United States Miami, Florida, United States
  3. United States Las Vegas, Nevada, United States
  4. South Africa Nelspruit, South Africa
  5. South Africa Tshwane, South Africa
  6. Malaysia Kuantan, Malaysia
  7. Malaysia Seremban, Malaysia
  8. Malaysia Petaling Jaya, Malaysia
  9. Italy Bari, Italy
  10. Austria Klagenfurt, Austria
  11. Philippines Cebu City, Philippines
  12. Germany Braunschweig, Germany
  13. Thailand Udon Thani, Thailand
  14. India Bangalore, India
  15. Indonesia Pekanbaru, Indonesia
  16. Indonesia Manado, Indonesia
  17. Slovenia Maribor, Slovenia
  18. Slovakia Topolcianky, Slovak Republic
  19. Japan Hamamatsu, Japan
  20. South Korea Suwon, South Korea
  21. China Liuzhou, China
  22. China Hangzhou, China
  23. Kazakhstan Almaty, Kazakhstan
  24. Burma Mandalay, Burma
Monumen Sister City di Kota Bandung
Dari 24 kota yang menjadi sister city, terdapat 4 monumen sister city yang menjadi simbol kerja sama Kota Bandung dengan mitra kotanya: Braunschweig, Fort Worth, Suwon, dan Liuzhou.
  • Monumen Sister City Liuzhou
(sumber: wikimapia.org)
Liuzhou merupakan sebuah kota di Cina yang terletak di bagian timur. Tepatnya di Region Otonomi Guangxi. Liuzhou terletak di aliran Sungai Liu, terletak 255 km dari Nanning, ibukota propinsi. Liuzhou terletak 3.535 km dari Beijing, 2.033 km dari Shanghai dan 727 km dari Hong Kong . Liuzhou merupakan kota pertama yang dilewati sungai Liu yang memiliki air sangat bersih. Tradisi berenang di sungai Liu menjadi tradisi bagi kota ini. Liuzhou memiliki populasi 3.758.700 jiwa (sensus 2010), dengan luas wilayahnya 18.677 km2. Kepadatan penduduk kota Liuzhou sekitar 200 jiwa/km2.
Pemerintah Kota Bandung menjalin hubungan sister city (kota bersaudara) dengan dua kota dari negara RRC, yaitu Kota Liuzhou Provinsi Guang Xi dan Kota Yingkau Provinsi Lioning, ditandai penandatangan Memorandum of Understanding (MoU) di Plaza Monumen Bandung Lautan Api (BLA) atau Taman Asia-Afrika Tegallega, Kamis (21/09/2006). Penandatangan MoU, masing-masing dilakukan oleh Walikota Bandung Dada Rosada , Wakil Walikota Liuzhou, Mrs. Wen Hequn dan Wakil Walikota Yingkou, Mr. Hao Qinghui.
Tidak diketahui secara pasti meliputi bidang apa saja kerja sama yang dilakukan oleh pihak Liuzhou dan Yingkau dengan Kota Bandung. Satu hal lagi yang cukup menarik adalah tidak adanya monumen sister city Yingkau, padahal penandatanganan MoU Yingkau bersamaan dengan penandatanganan MoU Liuzhou.
  • Monumen Sister City Braunschweig
(sumber: wikimapia.org)
Braunschweig adalah kota terbesar kedua di Niedersachsen, berpenduduk sekitar 250 ribu jiwa. Di Braunschweig terdapat banyak lembaga-lembaga penelitian nasional, bahkan menurut survei yang baru, daerah Braunschweig dan sekitarnya mempunyai pengeluaran per kapita terbesar untuk Eropa dalam hal penelitian. Universitas teknik tertua di Jerman juga terletak di kota ini dan Carl Friedrich Gauss juga lahir di sini. Selain itu terdapat industri automobil dan penunjangnya. Braunschweig memiliki luas wilayah 192.13 km, dengan jumlah penduduk sebanyak 243.829 jiwa .
Pada tanggal 24 Mei 1960 di Museum Kota Braunschweig dalam upacara khusus diresmikan persahabatan antara kota Braunschweig dan Bandung yang ditandai dengan penandatanganan Piagam Ikatan Persahabatan Bandung – Braunschweig, dari Pihak Indonesia diwakili oleh Duta Besar RI, Dr. Zairin Zain dan dari pihak Jerman diwakili oleh Hans Gunther Weber (Direktur Kota) dan Oberburgermeister (Walikota Braunschweig) Ny. Martha Fuchs. Piagam Persahabatan itu baru disempurnakan setelah ditandatangani oleh Walikota Bandung Bapak R. Priatnakusumah disaksikan oleh 300 orang tokoh-tokoh Bandung serta utusan Braunschweig Prof. Dr. George Eckert, pada tanggal 2 Juni 1960 di Bandung [6].
Kerjasama Braunschwieg ini, merupakan kerjasama yang paling lama di Indonesia. Bidang kerjasama meliputi ekonomi, sosial budaya, pendidikan, pertukaran pemuda, pelatihan, kesenian dan olahraga. Titik berat pada bidang sosial budaya, pelatihan dan pertukaran pemuda [7].
  • Monumen Sister City Forth Worth
(sumber: wikimapia.org)
Fort Worth merupakan kota terbesar ke-16 di Amerika Serikat dan merupakan kota terbesar ke-5 di negara bagian Texas. Kota ini memiliki luas wilayah 904.4 km2, jumlah populasi 777.992 jiwa, dengan kepadatan 835.2/km.
Berawal dari saran Prof. Dr. Ing. BJ. Habibie yang pada waktu itu menjabat sebagai Menteri Riset dan Teknologi yang juga menjabat Direktur Utama IPTN, mengharapkan untuk menjalin sister city antara Kota Bandung dengan Kota Fort Worth Texas, Amerika serikat. Dasar kerjasama mitra kota ini dilatarbelakangi oleh kerjasama IPTN dengan Pabrik Helicopter BELL. Penandatangan MoU Mitra Kota antara Kotamadya Bandung dengan Kota Fort Worth dilaksanakan pada tanggal 2 April 1990 oleh Walikota Bandung, Ateng Wahyudi, dan Walikota Fort Worth, Bob Bolen .
Kerjasama antara Bandung-Forth Worth meliputi bidang ekonomi, bidang pendidikan, bidang pelatihan, bidang kesenian, pertukaran pemuda dan sosial budaya .
  • Monumen Sister City Suwon
(sumber: wikimapia.org)
Suwon merupakan sebuah kota yang terletak di bagian barat dari negara Korea Selatan, tepatnya di Provinsi Gyeonggi-do, dan hanya berjarak 30 km dari Seoul.  Kota Suwon memiliki kebudayaan yang unik dan mempunyai obyek-obyek wisata yang indah. Pada tahun 2002, Kota Suwon menjadi salah satu tuan rumah diselenggarakannya turnamen akbar Piala Dunia Korea-Jepang . Kota dengan luas 121.1 km2 dan jumlah populasi 1.160.062 jiwa ini merupakan salah satu kota pendidikan utama di Korea Selatan. Tercatat ada 14 universitas terdapat di kota ini .
Inisiatif untuk menjadi sister city berawal dari Pemerintahan Kota Suwon yang berkeinginan mengadakan kerja sama dengan Kotamadya Bandung, yang disanpaikan melalui kedutaan Besar RI di Seoul dan Dirjen HELN Departemen Luar Negeri untuk disampaikan kepada Menteri Luar Negeri RI. Kerja sama antara Kota Bandung dengan Kota Suwon, Korea Selatan ditandatangani tanggal 27 Agustus 1997. Kerja sama tersebut meliputi bidang ekonomi, sosial budaya, pendidikan, kesenian dan olahraga

Mineral Characteristics

Although there are thousands of minerals in Earth, there are only about 20 common minerals. The same mineral found in different parts of the world will always look the same and will have a characteristic crystal form and a consistent chemical formula. Minerals can be identified in rocks by a process of elimination. A variety of features can be used to identify specific minerals. Some of the most common are listed below.

Crystal Form

Minerals form crystals with specific shapes (Pic. 1) when they have been able to grow without obstruction. Common shapes are prisms, pyramids, needles, cubes, and sheets.



Picture 1. A range ofcrystal shapes including pyramid(calcite, left) and acicular (needlelike,tourmaline, right).

Cleavage

Minerals break along specific planes of weakness related to their atomic structure (Pic. 2). Amphibole’s cleavage planes intersect at 120 degrees; pyroxene has a distinctive 90 degree cleavage intersection. Quartz has no cleavage planes but fractures irregularly.


Picture 2. Cleavage planes in amphiboleintersect at an angle of 120 degrees




Moh’s Hardness Scale

Minerals are ranked from 1 to 10 based upon their relative hardness (Pic 3). Harder minerals can scratch softer minerals. Ten index minerals make up Moh's scale and other minerals are ranked relative to these. For example, a mineral that could scratch feldspar but not quartz would have a hardness of approximately 6.5.

Picture 3. Corundum ranks 9th on Moh's hardness scale



Color


Minerals come in a variety of colors (Pic. 4). Examples of common dark-colored minerals (black, dark brown, dark green) are amphibole, olivine, pyroxene, biotite mica. Light-colored minerals (white, pink, gray, translucent) are represented by quartz, feldspar (orthoclase, plagioclase), muscovite mica, gypsum, halite, calcite. However, we must be careful in using color to identify minerals because some minerals can be found in a wide range of colors.

Picture 4. Brightly colored Azurite (blue) and malachite (green).

Luster


Characteristics of light reflected from mineral is luster (Pic. 5). Types of luster include earthy, silky, glassy, and metallic.

Picture 5. Metallic luster of galena.


Streak

Minerals will leave a mark when pulled across an unglazed porcelain streak plate (Pic. 6). The streak represents the mineral in powdered form and is often constant even when mineral color changes. This property is most useful for metallic minerals that leave a dark-colored streak.

Picture 6 . Brown streak on white porcelain streak plate from metallic iron mineral hematite.


Other

Calcite reacts (bubbles) with weak acids (Pic. 7); halite (rock salt) has a salty taste.

Picture 7. Left: Calcite and dropper prior to addition of acid. Right: Reaction of calcite and weak
hydrochloric acid







Coriolis Force, Geostrophic Wind and Gradient Wind

Coriolis Force
an artifact of the earth's rotation
Once air has been set in motion by the pressure gradient force, it undergoes an apparent deflection from its path, as seen by an observer on the earth. This apparent deflection is called the "Coriolis force" and is a result of the earth's rotation.

As air moves from high to low pressure in the northern hemisphere, it is deflected to the right by the Coriolis force. In the southern hemisphere, air moving from high to low pressure is deflected to the left by the Coriolis force.
The amount of deflection the air makes is directly related to both the speed at which the air is moving and its latitude. Therefore, slowly blowing winds will be deflected only a small amount, while stronger winds will be deflected more. Likewise, winds blowing closer to the poles will be deflected more than winds at the same speed closer to the equator. The Coriolis force is zero right at the equator.

Geostrophic Wind
winds balanced by the Coriolis and Pressure Gradient forces
An air parcel initially at rest will move from high pressure to low pressure because of the pressure gradient force (PGF). However, as that air parcel begins to move, it is deflected by the Coriolis force to the right in the northern hemisphere (to the left on the southern hemisphere). As the wind gains speed, the deflection increases until the Coriolis force equals the pressure gradient force. At this point, the wind will be blowing parallel to the isobars. When this happens, the wind is referred to as geostrophic.

The picture at the side illustrates the process mentioned above, while the diagram at right shows the two forces balancing to produce the geostrophic wind. Winds in nature are rarely exactly geostrophic, but to a good approximation, the winds in the upper troposphere can be close. This is because winds are only considered truly geostrophic when the isobars are straight and there are no other forces acting on it -- and these conditions just aren't found too often in nature.
 
Gradient Wind
non-geostrophic winds which blow parallel to isobars


Geostrophic winds exist in locations where there are no frictional forces and the isobars are striaght. However, such locations are quite rare. Isobars are almost always curved and are very rarely evenly spaced. This changes the geostrophic winds so that they are no longer geostrophic but are instead in gradient wind balance. They still blow parallel to the isobars, but are no longer balanced by only the pressure gradient and Coriolis forces, and do not have the same velocity as geostrophic winds.






Winds near the surface
Winds affected by friction
Geostrophic wind blows parallel to the isobars because the Coriolis force and pressure gradient force are in balance. However it should be realized that the actual wind is not always geostrophic -- especially near the surface.
The surface of the Earth exerts a frictional drag on the air blowing just above it. This friction can act to change the wind's direction and slow it down -- keeping it from blowing as fast as the wind aloft. Actually, the difference in terrain conditions directly affects how much friction is exerted. For example, a calm ocean surface is pretty smooth, so the wind blowing over it does not move up, down, and around any features. By contrast, hills and forests force the wind to slow down and/or change direction much more.

As we move higher, surface features affect the wind less until the wind is indeed geostrophic. This level is considered the top of the boundary (or friction) layer. The height of the boundary layer can vary depending on the type of terrain, wind, and vertical temperature profile. The time of day and season of the year also affect the height of the boundary layer. However, usually the boundary layer exists from the surface to about 1-2 km above it.




In the friction layer, the turbulent friction that the Earth exerts on the air slows the wind down. This slowing causes the wind to be not geostrophic. As we look at the diagram above, this slowing down reduces the Coriolis force, and the pressure gradient force becomes more dominant. As a result, the total wind deflects slightly towards lower pressure. The amount of deflection the surface wind has with respect to the geostrophic wind above depends on the roughness of the terrain. Meteorologists call the difference between the total and geostrophic winds ageostrophic winds. 

Monday, May 30, 2016

Colloid


 A colloid, in chemistry, is a mixture in which one substance of microscopically dispersed insoluble particles is suspended throughout another substance.


In  IUPAC definition,  colloid is a short synonym for colloidal system, and colloidal is a state of subdivision such that the molecules or polymolecular particles dispersed in a medium have at least one dimension between approximately 1 nm and 1 μm, or that in a system discontinuities are found at distances of that order.


Types Of Colloid :

Dispersion Phase/ ->
Dispersion Medium
Gas
Liquid
Solid
Gas
None
Liquid Aerosol
Solid Aerosol
Liquid
Foam
Emulsion
Sol
Solid
Solid Foam
Gel
Solid-Sol


Colloid Characteristics:

1.Tyndall effect,
Tyndall effect is used commercially to determine the size and density of particles in aerosols and other colloidal matter
source : epicphysics.com
2.Adsorbtion
Adsorption is the adhesion of atomsions, or molecules from a gas, liquid, or dissolved solid to a surface
source : dictionary.com
3. Brownian Motion
Brownian motionis the random motion of particles suspended in a fluid (aliquid or a gas) resulting from their collision with the quick atoms or molecules in the gas or liquid. It makes the colloid cannot gravitate.
source : perpustakaancyber.blogspot.com
4.Coagulation
Coagulation is a process which involves coming together of colloidal particles so as to change into large sized particles which ultimately settle as a precipitate or float on the surface.
source : bisakimia.com
5. Electrophoresis
Electrophoresis is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric field
source : majalahkimia.blogspot.com
6. Dialysis
Dialysis is the separation of colloids from dissolved ions or molecules of small dimensions, orcrystalloid, in a solution.

source : catatan.legawa.com

Sunday, May 29, 2016

Choir


 Hasil gambar untuk choir
A choir (/ˈkwaɪ.ər/) (also known as a chorale or chorus) is a musical ensemble of singers. Most choirs are led by a conductor, who leads the performances with arm and face gestures.

Most often choirs consist of four sections intended to sing in four part harmony, but there is no limit to the number of possible parts as long as there is a singer available to sing the part.Other than four, the most common number of parts are three, five, six, and eight. Choirs can sing with or without instrumental accompaniment. Singing without accompaniment is called a cappella singing. Accompanying instruments vary widely, from only one instrument (a piano or pipe organ) to a full orchestra of 70-100 musicians; for rehearsals a piano or organ accompaniment is often used, even if a different instrumentation is planned for performance, or if the choir is rehearsing unaccompanied music.

Types Of Choir
1.Mixed choirs (with male and female voices). This is perhaps the most common type, usually consisting of sopranoaltotenor, and bass voices, often abbreviated as SATB. Often one or more voices is divided into two, e.g., SSAATTBB, where each voice is divided into two parts, and SATBSATB, where the choir is divided into two semi-independent four-part choirs. Occasionally baritone voice is also used (e.g., SATBarB), often sung by the higher basses. In smaller choirs with fewer men, SAB, or Soprano, Alto, and Baritone arrangements allow the few men to share the role of both the tenor and bass in a single part.
2.Male choirs, with the same SATB voicing as mixed choirs, but with boys singing the upper part (often called trebles or boy sopranos) and men singing alto (in falsetto), also known as countertenors. This format is typical of the British cathedral choir.
3.Female choirs, usually consisting of soprano and alto voices, two parts in each, often abbreviated as SSAA, or as soprano I, soprano II, and alto, abbreviated SSA.
4.Men's choirs, or Male Chorale, usually consisting of two tenors, baritone, and bass, often abbreviated as TTBB (or ATBB if the upper part sings falsetto in alto range). ATBB may be seen in some barbershop quartet music.
5.Children's choirs, often two-part SA or three-part SSA, sometimes more voices. This includes boy choirs.Boy choirs typically sing SSA or SSAA, sometimes including a tenor part for boys whose voices are changing.